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Abstract

Let S = C × · · · × C (k times) and 1 ≤ k < ∞ be an integer, where C is a commutative
ring with unity 1 ̸= 0. In this paper, we classify the rings S such that the extended total dot
product graph TD(S) and the extended zero-divisor dot product graph ZD(S) have genus one
and two. Furthermore, we characterize S such that the total dot product graph TD(S) and the
zero-divisor dot product graph ZD(S) have crosscap one and two.

Keywords: dot product graph; genus; crosscap; reduced ring.

https://mjms.upm.edu.my
https://orcid.org/0000-0001-7602-0268
https://orcid.org/0000-0003-4291-5746
https://orcid.org/0000-0002-9576-3013


A. Ali et al. Malaysian J. Math. Sci. 19(3): 921–932(2025) 921 - 932

1 Introduction

The exploration of algebraic graph assignments to commutative rings began with Beck’s work
[10], which primarily focused on graph coloring. In 1999, Anderson and Livingston [7] studied
ring theory in relation to graph theory by introducing zero-divisor graph Γ(S),where S is a com-
mutative ring with unity. The vertex set of this graph consists of Z(S)∗ (nonzero zero-divisors),
and two distinct vertices r, s ∈ Z(S)∗ form an edge if and only if rs = 0.Anderson and Livingston
studied the connectedness, diameter and girth of Γ(S). Further this work is continued by Akbari
and Mohammadian [2, 3]. Since then, investigations into the characteristics of a ring through its
zero-divisor graph have developed into a rich field of study, marked by continuous inquiries and
valuable insights [6]. The extended zero-divisor graph, denoted by Γ(S), was introduced by Ben-
nis et al. [11], in which the vertex set of Γ(S) is taken as Z(S)∗. The adjacency between w and z
from Z(S)∗ is contingent upon the condition wkzℓ = 0, where wk ̸= 0 and zℓ ̸= 0, where k and ℓ
are positive integers. There are various other extensions of the zero-divisor graph has been done
two of them are studied [4, 13].

Let S = C×· · ·×C (k times) and 1 ≤ k < ∞ be an integer, whereC is a commutative ringwith
1 ̸= 0. In 2015, Badawi [8] introduced the idea of dot product graph. The author defined total dot
product graph TD(S)with vertex set S∗ = S \ {(0, 0, . . . , 0)} and zero-divisor dot product graph
ZD(S) with vertex set Z(S)∗. Two vertices are taken from S∗ and Z(S)∗, respectively and two
distinct vertices t = (t1, t2, . . . , tm) and s = (s1, s2, . . . , sm) are adjacent if and only if t · s = 0.
Badawi [8] proved some results regarding the connectedness, diameter and girth of this graph. In
2020, Selvakumar et al. [14] further explored these graphs, categorized S, for which TD(S) and
ZD(S) have a genus of zero, one, or two. Also there are work related to topological properties of
zero-divisor graph and its extended zero-divisor graph are studied in [16, 15].

In 2024, Asma et al. [5] extended the dot product graph and defined two new types of graphs:
the extended total dot product graph TD(S), with the set S∗ as the vertex set, and the extended
zero-divisor dot product graph ZD(S),with the set Z(S)∗ as the vertex set. Two vertices w and z
(distinct) are adjacent if and only ifwk ·zℓ = 0,wherewk ̸= 0 and zℓ ̸= 0. Themain objective of [5]
was to examine the basic properties of these graphs and also classify the rings S for which TD(S)
and ZD(S) are planar/outerplanar. This paper aims to determine the if and only if conditions
under which these graphs have a genus one or two, and also classify the ring S such that TD(S)
and ZD(S) have a crosscap number of one or two.

Throughout the paper, we consider C to be a commutative ring with unity 1 ̸= 0, and
S = C×C×· · ·×C (k times), where k is a positive integer. We also consider S× as the set of units
of S andC× as the set of units ofC. A ring S with no nonzero nilpotent element is called reduced.
LetH be a graphwith vertex set V and edge setE.Agraph is said to be connected if there is a path
between every pair of distinct vertices inH ; if not, it is termed disconnected. A complete bipartite
graphK|V1|,|V2| splits the vertex set V into two subsets, V1 and V2. In this graph, each vertex in V1

is adjacent to every vertex in V2, but no two distinct vertices within the same subset are adjacent,
where |V1| and |V2| denote the cardinalities of the sets V1 and V2, respectively. A planar graph is
one that can be embedded on a plane such that its edges meet only at their endpoints.

Let Sn represent a sphere with n handles, where n is a natural number; in other words, Sn is
an orientable surface characterized by having n handles. The minimum value of n that permits
a graph H to be embedded in the orientable surface in Sn is known as the genus of the graph,
denoted by γ(H). In other words, the smallest number of handles needed for its embedding on
an orientable surface is called the genus of a graph. A graph is termed as planar if γ(H) = 0.
If γ(H) = 1, then, the graph is referred as toroidal and a graph having genus two is known as
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bi-toriodal. The crosscap number γ(H) is the minimum number of projective planes k required
to embed H in Sn, where Sn denote a sphere with k projective planes. If a graph H that can be
embedded into S1 but cannot be embedded into a plane, then, it is called crosscap one ofH and if
a graph that can be embedded into S2 but not in S1, then, it is called crosscap two ofH . The minor
subgraph H ′ of a graph H is a graph obtained through the contraction of its edges and isolation
of vertices. The contracted edges of a minor subgraph are symbolized by the vertex [u, z], where
u and z belong to the vertex set V (H). If the graph H have a minor subgraph H ′, then, the genus
and crosscap of H ′ is less than or equal to the genus and crosscap of H.

2 Genus of TD(S) and ZD(S)

In this section, we categorize the rings S = C × C × · · · × C (k times) such that TD(S) and
ZD(S) are of genus one and two.

Lemma 2.1. [17, Theorem 6.37] If r, s ≥ 2 are integers, then,

γ(Kr,s) =

⌈
(r − 2)(s− 2)

4

⌉
.

Lemma 2.2. [14, Lemma 4.2] If H be a simple connected graph with n vertices, m edges and girth gr,
then,

γ(H) ≥ m(gr − 2)

2gr
− n

2
+ 1.

Lemma 2.3. [9, Theorem 4.3] The genus of a graph is the total of the genera of its individual blocks.

Theorem 2.1. [5, Theorem 4.1] Let S = C × C × · · · × C (k times), where 2 ≤ k < ∞. Then, ZD(S)
is planar if and only if S ∼= Z2 × Z2 × Z2 or Z3 × Z3 or Z2 × Z2.

Theorem 2.2. [5, Theorem 4.2] Let S = C × C × · · · × C (k times), where 2 ≤ k < ∞. Then, TD(S)
is planar if and only if S ∼= Z2 × Z2 × Z2 or Z3 × Z3 or Z2 × Z2.

Lemma 2.4. If C ∼= Z2 and S = C × C × · · · × C (k times), where 4 ≤ k < ∞, then, γ(ZD(S)) ≥ 3.

Proof. Suppose k ≥ 4, and consider the set H = H1 ∪H2, where

H1 =
{
h1 = (1, 0, 0, 1, 0, . . . , 0), h2 = (0, 1, 1, 0, . . . , 0), h3 = (1, 0, 1, 0, . . . , 0),

h4 = (0, 1, 0, 1, . . . , 0), h5 = (1, 1, 0, 0, . . . , 0), h6 = (0, 0, 1, 1, 0, . . . , 0)
}
,

H2 =
{
h′
1 = (0, 1, 0, 0, . . . , 0), h′

2 = (1, 1, 1, 0, . . . , 0), h′
3 = (0, 0, 1, 0, . . . , 0),

h′
4 = (1, 1, 0, 1, 0, . . . , 0), h′

5 = (0, 0, 0, 1, 0, . . . , 0), h′
6 = (1, 1, 0, 1, . . . , 0),

h′
7 = (1, 0, 0, . . . , 0), h′

8 = (0, 1, 1, 1, 0, . . . , 0)
}
.

Then,H is the smallest set of vertices contained in V (ZD(S)).On contracting the vertices [h1, h2],
[h3, h4] and [h5, h6], we get the graph which is the minor subgraph of ZD(S), shown in Figure 1.
Since we observe that the minor subgraph has eleven vertices and forty edges, so, by Lemma 2.2,
we get γ(ZD(S)) ≥ 3.
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Figure 1: Minor subgraph of ZD(S).

Selvakumar et al. [14, Theorem 5.1] proved that γ(ZD(C × C × C)) ≥ 3, if |C| ≥ 3. Since
ZD(S) span ZD(S) (spanning subgraph of ZD(S)), then, γ(ZD(C × C × C)) ≥ 3. Hence, we
deduce the following:

Lemma 2.5. If |C| ≥ 3, and S = C × C × C. Then, γ(ZD(S)) ≥ 3.

The lemma can also be extended as follows:

Lemma 2.6. Let S = C × C × · · · × C (k times), where 2 ≤ k < ∞ and C is a nonreduced ring. Then,
γ(ZD(S)) ≥ 3.

Proof. SinceC is nonreduced, then, |C| ≥ 4. Let z ∈ N(C)∗ (nonzero nilpotent elements ofC) and
1 ̸= k ∈ C× (units of C). Consider the set D = {r1, r2, r3, r4, r5, s1, s2, s3, s4, s5}, where,

r1 = (1, 0, ..., 0), r2 = (z, 0, ..., 0), r3 = (k, 0, ..., 0), r4 = (1, z, 0, ..., 0), r5 = (k, z, 0, ..., 0),

s1 = (0, 1, 0, ..., 0), s2 = (0, z, 0, ..., 0), s3 = (0, k, 0, ..., 0), s4 = (z, 1, 0, ..., 0), s5 = (z, k, 0, ..., 0).

Then, the graph obtained from the set D contains the induced subgraph, which is isomorphic to
K5,5 in Figure 2. Since C is nonreduced, then, D ⊆ V (ZD(S)). Hence, γ(ZD(S)) ≥ 3.

s1 s2 s3 s4 s5

r1 r2 r3 r4 r5

Figure 2: Subgraph of ZD(S).
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Theorem 2.3. Let S = C ×C × · · · ×C (k times), where 2 ≤ k < ∞. Then, γ(ZD(S)) = 1, if and only
if,

S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
, or Z5 × Z5.

Proof. If k ≥ 4, then by Lemma 2.4, we get γ(ZD(S)) ≥ 3. If k = 3 and |C| ≥ 3, then by Lemma
2.5, γ(ZD(S)) ≥ 3. Also, if S ∼= Z2 × Z2 × Z2, then from Theorem 2.1, ZD(S) is planar. Hence,
k = 2.

Now, if C is nonreduced ring, then from Lemma 2.6, γ(ZD(S)) ≥ 3, not possible by assumption.
Let k = 2 and C is reduced (not a field). Then, |C| ≥ 6. Since ZD(S) has an induced subgraph
K5,5, then by Lemma 2.1, γ(ZD(S)) ≥ 3, not possible by assumption. Now, we check the rings;

Z2 × Z2, Z3 × Z3,
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
and Z5 × Z5. If we consider the rings Z2 × Z2 and

Z3 × Z3, then from Theorem 2.1, ZD(S) is a planar, a contradiction. So, the possible rings S for

which ZD(S) is of genus one are Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
or Z5 × Z5.

Conversely, if S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
or Z5 × Z5. Then, the graph obtained from

Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
and Z5 × Z5 are isomorphic to K3,3 and K4,4, respectively. Therefore,

from Lemma 2.1, we have γ(ZD(S)) = 1.

Theorem 2.4. Let S = C ×C × · · ·×C (k times), where 2 ≤ k < ∞. Then, γ(ZD(S)) = 0 or 1 or≥ 3.

Proof. Assume that γ(ZD(S)) = 2. If we consider k ≥ 4, then fromLemma 2.4, we get γ(ZD(S)) ≥
3, a contradiction. Hence, k ≤ 3.

Case (a) k = 3.
If |C| ≥ 3, then from Lemma 2.5, γ(ZD(S)) ≥ 3, a contradiction. Hence, |C| = 2.
Also, if S ∼= Z2 × Z2 × Z2, then from Theorem 2.1, ZD(S) is planar.

Case (b) k = 2.
If |C| ≥ 6, then, clearly K5,5 is a subgraph of ZD(S). Therefore, from Lemma 2.1,
γ(ZD(S)) ≥ 3, a contradiction. Hence, |C| ≤ 5. So the following rings are under

consideration: Z5 × Z5,
Z2[t]

⟨t2 + t+ 1⟩
× Z2[x]

⟨t2 + t+ 1⟩
, Z3 × Z3 and Z2 × Z2. Thus, from

Theorem 2.1 and Theorem 2.3, we obtain that ZD(S) is either planar or of genus 1,
again a contradiction. Hence, γ(ZD(S)) ≥ 3.

Remark 2.1. Let S = C × C × · · · × C (k times), where C is a ring with 1 ̸= 0 and 2 ≤ k < ∞. Then
from Theorem 2.4, we conclude that there is no ring S for which γ(ZD(S)) = 2.

Theorem 2.5. Let S = C×C×· · ·×C (k times), where 2 ≤ k < ∞. Then, the nonzero genus of TD(S)
is at least 2.
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Proof. Since TD(S) has an induced subgraph ZD(S), then, from Theorem 2.4, the only possibility

of rings S such that γ(TD(S)) = 2 are Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
orZ5×Z5. If we considerZ5×Z5,

then, it contains a subgraph which have disjoint copies of twoK4,4 in Figures 3 and 4. Thus from
Lemmas 2.1 and 2.3, γ(TD(Z5 × Z5)) ≥ 2.

Similarly, if we consider Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
, then, it contain two disjoint copies of K3,3.

Therefore, from Lemmas 2.1 and 2.3, γ(TD(
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
) ≥ 2. Hence, genus of

TD(S) is at least 2.

(1,4) (2,3) (3,2) (4,1)

(1,1) (2,2) (3,3) (4,4)

Figure 3: Subgraph of TD(Z5 × Z5).

(1,0) (2,0) (3,0) (4,0)

(0,1) (0,2) (0,3) (0,4)

Figure 4: Subgraph of TD(Z5 × Z5).

Remark 2.2. Let S = C×C×·· ·×C (k times), where 2 ≤ k < ∞. Then from Theorem 2.5, we conclude
that there is no ring S for which γ(TD(S)) = 1.

Theorem 2.6. Let S = C ×C × · · · ×C (k times), where 2 ≤ k < ∞. Then, γ(TD(S)) = 2 if and only

if S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
or Z5 × Z5.

Proof. Suppose that k ≥ 4 and γ(TD(S)) = 2. As ZD(S) is an induced subgraph of TD(S), then
from Lemma 2.4 γ(TD(S) ≥ 3, a contradiction. Thus, k ≤ 3. Let, k ≤ 3. Then from Lemma 2.5,
γ(TD(S) ≥ 3. Hence, k = 2. Assume that |C| ≥ 6. Then, K5,5 is a subgraph of TD(S). Therefore,
from Lemma 2.1 γ(TD(S) ≥ 3. Thus, |C| ≤ 5. Also, if S ∼= Z2×Z2 or Z3×Z3, then from Theorem
2.2, TD(S) is planar, which is not possible by assumption. So, the possible rings such that

γ(TD(S)) = 2 are Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
or Z5 × Z5.
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Conversely, letS ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
orZ5×Z5.Then by [5, Theorem8], TD(S) = TD(S).

Thus from [14, Theorem 5.2], γ(TD(S)) = 2.

3 Crosscap Characterizations of TD(S) and ZD(S)

Let S = C×· · ·×C (k times), where 1 ≤ k < ∞. The unit dot product graph UD(S) is defined
as the graph whose vertex set is S×, where two distinct vertices c1, c2 ∈ S× are connected by an
edge if and only if c1 · c2 = 0. The graph UD(S) is a subgraph of TD(S), which is introduced and
studied by Abdulla and Badawı in [1]. In this section, we classify the rings S for which TD(S)
and ZD(S) are of crosscap one and two.

Lemma 3.1. [17, Theorem 11.23] γ(Kp,q ) =

⌈
(p− 2)(q − 2)

2

⌉
, where p ≥ 1 and q ≥ 1. In particular,

γ(K3,3 ) = 1 and γ(K3,4 ) = 1.

Corollary 3.1. [12, Corollary 1.5] Let H be a graph with two subgraphs H1 and H2, where H1 and H2

are isomorphic toK5 orK3,3. If H1 ∩H2 = v, then, γ(H) ≥ 2.

Example 3.1. Let S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
. Then, γ(UD(S)) = 1.

Proof. Here,

V (UD(S)) =
{
(1, 1), (1, 1 + t), (t, t), (1 + t, 1 + t), (1 + t, 1), (t, 1 + t), (1, t), (t, 1), (1 + t, t)

}
.

Embedding of UD

(
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩

)
in S1 is shown in the Figure 5.

(t, t)

(1, 1)

(1 + t, 1 + t)

(t, 1 + t)(1, 1 + t)

(t, 1)

(1 + t, 1)

(1, t)

(1 + t, t)

Figure 5: Embedding of UD

(
Z2[t]

⟨t2 + t + 1⟩
×

Z2[t]

⟨t2 + t + 1⟩

)
in S1.

Lemma 3.2. If C ∼= Z2 and S = C × C × · · · × C (k ≥ 4 times), then, γ(ZD(S)) ≥ 3.
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Proof. Let us consider the set H = H1 ∪H2, where

H1 =
{
ℓ1 = (1, 1, 0, 0, . . . , 0), ℓ2 = (0, 0, 1, 1, 0, . . . , 0), ℓ3 = (0, 1, 0, 1, 0, . . . , 0),

ℓ4 = (1, 0, 1, 0, . . . , 0), ℓ5 = (0, 1, 1, 0, . . . , 0), ℓ6 = (1, 0, 0, 1, 0, . . . , 0)
}
, and

H2 =
{
t1 = (1, 0, 0, 0, . . . , 0), t2 = (0, 0, 0, 1, 0, . . . , 0), t3 = (0, 0, 1, 0, . . . , 0),

t4 = (1, 1, 1, 0, . . . , 0), t5 = (0, 1, 1, 1, 0, . . . , 0), t6 = (1, 1, 0, 1, 0, . . . , 0),

t7 = (1, 0, 1, 1, 0, . . . , 0)
}
.

Then, H ⊆ V (ZD(S)). On contracting the edges [ℓ1, ℓ2], [ℓ3, ℓ4] and [ℓ5, ℓ6], then, the graph ob-
tained from the setH contains an induced subgraphK3,7 in Figure 6. Therefore, from Lemma 3.1,
γ(ZD(S)) ≥ 3.

[ℓ1, ℓ2] [ℓ3, ℓ4] [ℓ5, ℓ6]

t2 t3 t4 t5 t6 t7t1

Figure 6: Minor subgraph of ZD(S).

Example 3.2. Let C ∼= Z3 and S = C × C × C. Then, γ(ZD(S)) ≥ 2.

Proof. Let,

I1 =
{
(1, 2, 0), (0, 0, 1), (0, 1, 0), (2, 1, 0), (0, 0, 2), (1, 1, 0), (2, 2, 0)

}
, and

I2 =
{
(1, 0, 0), (0, 1, 2), (0, 2, 1), (0, 1, 1), (2, 0, 0), (0, 2, 0), (0, 2, 2)

}
.

Then, I1 ∪ I2 ⊂ V (ZD(S)). On contracting the edges
[
(0, 0, 1), (0, 1, 0)

]
,
[
(2, 0, 0), (0, 2, 0)

]
and[

(0, 0, 2), (1, 0, 0)
]
, we see that the graphs obtained from I1 and I2 are K3,3 (shown in Figure 7).

Let the graph obtained by set I1 is H1 and the graph obtained by set I2 is H2 Then, clearly H1 ∩
H2 = {[(0, 0, 2), (1, 0, 0)]}. Thus, the graph in the Figure 7 satisfies the condition of Corollary 3.1.
Therefore, γ(ZD(S)) ≥ 2.

(1, 2, 0) [(0,0,1),(0,1,0)] (2, 1, 0)

[(0, 0, 2), (1, 0, 0)] (1,1,0) (2, 2, 0)

(0,1,1) [(2,0,0),(0,2,0)] (0, 2, 2)

[(0,0,2),(1,0,0)] (0, 1, 2) (0, 2, 1)

Figure 7: Minor subgraphs of ZD(Z3 × Z3 × Z3).
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Theorem 3.1. Let S = C ×C × · · · ×C (k times), where 2 ≤ k < ∞. Then, γ(ZD(S)) = 1 if and only

if S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
.

Proof. Suppose that γ(ZD(S)) = 1. Assume k ≥ 4. Then from Lemma 3.2, γ(ZD(S)) ≥ 3, not
possible by assumption. Thus, k ≤ 3. If k = 3 and |C| ≥ 3, then, ZD(Z3 × Z3 × Z3) is a subgraph
ofZD(S). Therefore, from Example 3.2, γ(ZD(S)) ≥ 2, not possible by assumption. Hence, k = 2.

Now, assume that |C| ≥ 5, then, K4,4 is a subgraph of ZD(S). Therefore, from Lemma 3.2,
γ(ZD(S)) ≥ 2, not possible by assumption. So, possible rings under consideration are Z2 × Z2,

Z3 × Z3, Z2 × Z2 × Z2 and
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
. If S ∼= Z2 × Z2 or Z3 × Z3 or Z2 × Z2 × Z2,

then, ZD(S) is planar by [14, Corollary 3.5]. Thus, S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
.

Conversely, if S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
, then, ZD(S) ∼= K3,3. Hence, from Lemma 3.1,

γ(ZD(S)) = 1.

Theorem 3.2. Let S = C ×C × · · · ×C (k times), where 2 ≤ k < ∞. Then, γ(ZD(S)) = 2 if and only

if, S ∼=
Z2[t]

⟨t2⟩
× Z2[t]

⟨t2⟩
or Z4 × Z4 or Z5 × Z5.

Proof. Suppose that γ(ZD(S)) = 2. Assume k ≥ 4. Then from Lemma 3.2, γ(ZD(S)) ≥ 3, not
possible by assumption. Thus, k ≤ 3.

Let k = 3 and C ∼= Z3, then from Example 3.2, γ(ZD(Z3 × Z3 × Z3)) ≥ 2. Claim
γ
(
ZD(Z3 × Z3 × Z3)

)
≥ 3. Since

{
(1, 0, 1), (1, 0, 2), (2, 0, 2), (2, 0, 1)

}
⊂ V

(
ZD(Z3 × Z3 × Z3)

)
.

Clearly (1, 0, 1) − (1, 0, 2) − (2, 0, 2) − (2, 0, 1) − (1, 0, 1) forms a cycle. Therefore, these vertices
lie on the same face during the imbedding into N2. Now, if (0, 1, 0) and (0, 2, 0) lie on the distinct
copies ofK3,3, then, there is edge crossing in the embedding.

Also, if (0, 1, 0) and (0, 2, 0) lie on the same copies of K3,3, then, there is an edge crossing,
again a contradiction. Hence, γ(ZD(Z3 ×Z3 ×Z3)) ≥ 3. Now, ZD(Z3 ×Z3 ×Z3) is a subgraph of
ZD(C × C × C). Therefore, γ(ZD(C × C × C)) ≥ 3.

Assume that k = 2. If |C| ≥ 6, then, clearlyK5,5 is a subgraph of ZD(C×C), from Lemma 3.1,
a contradiction. Hence, |C| ≤ 5. Thus, the following rings under consideration areZ2×Z2,Z3×Z3,

Z2 × Z2 × Z2,
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
, Z2[t]

⟨t2⟩
× Z2[t]

⟨t2⟩
, Z4 × Z4 and Z5 × Z5. If S ∼= Z2 × Z2 × Z2

or Z2 × Z2 or Z3 × Z3, then, by [14, Corollary 3.5], ZD(S) is planar, leading to a contradiction.

Now, if S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
, then from Theorem 3.1, ZD(S) is of crosscap one, again a

contradiction. Hence, the possible rings such that ZD(S) is of crosscap two are Z2[t]

⟨t2⟩
× Z2[t]

⟨t2⟩
or

Z4 × Z4 or Z5 × Z5.

Conversely, if S ∼=
Z2[t]

⟨t2⟩
× Z2[t]

⟨x2⟩
or Z4 × Z4, then, the embedding of ZD(S) is shown in the
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Figure 8. Also, if S is isomorphic to Z5 × Z5, then, ZD(S) ∼= K4,4. Therefore, from Lemma 3.1,
γ(ZD(Z5 × Z5)) = 2.

(0,3)(2,2)

(0,2) (0,2)

(0,2) (0,2)

(1,0)

(1,0)

(2,0) (0,1)

(3,0)

(3,0)

(0,1) (2,0)

(2,1) (1,2)

(3,2) (2,3)

Figure 8: Embedding of ZD(Z4 × Z4) ∼= ZD

(
Z2[t]

⟨t2⟩
×
Z2[t]

⟨t2⟩

)
in S2.

Remark 3.1. IfH is a disconnected graph with connected componentsH1,H2,...,Hk such that
k⋂

i=1

Hi = ϕ

and γ(Hi) is the non-orientable genus of i − th connected component, then, γ(H) =

k∑
1

γ(Hi). This

relationship holds due to the additive nature of the non-orientable genus when dealing with disconnected
graphs. So, we use this concept in next result whenever graph is disconnected.

Theorem 3.3. Let S = C ×C × · · · ×C (k times), where 2 ≤ k < ∞. Then, γ(TD(S)) = 2 if and only

if, S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
or Z2[t]

⟨t2⟩
× Z2[t]

⟨t2⟩
or Z4 × Z4.

Proof. Since TD(S) contains ZD(S), then, from Theorems 3.1 and 3.2, the only possibility of

TD(S) is of crosscap two are Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
or Z2[t]

⟨t2⟩
× Z2[t]

⟨t2⟩
or Z4×Z4 or Z5×Z5. Let

S ∼= Z5 ×Z5. Then from Theorem 3.2, γ(ZD(S)) = 2. Also UD(S) has a subgraphK4,4, therefore
from Lemma 3.1, γ(UD(S)) ≥ 2. Since ZD(S) and UD(S) have total three connected components
of TD(S)with V (ZD(S)) ∩ V (UD(S)) = ϕ and E(ZD(S)) ∩ E(UD(S)) = ϕ.

Therefore, due to additive nature of crosscap, we have γ(TD(S)) ≥ 4, a contradiction. Thus,

S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
or Z2[t]

⟨t2⟩
× Z2[t]

⟨t2⟩
or Z4 × Z4.

Conversely, if S ∼=
Z2[t]

⟨t2⟩
× Z2[t]

⟨t2⟩
or Z4 × Z4. Then, the embedding of TD(S) is shown in the
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Figure 9. Next, if S ∼=
Z2[t]

⟨t2 + t+ 1⟩
× Z2[t]

⟨t2 + t+ 1⟩
, then, TD(S) is disconnected graph. Since

TD(S) = ZD(S) ∪ UD(S) with E(ZD(S)) ∩ E(UD(S)) = ϕ and V (ZD(S)) ∩ V (UD(S)) = ϕ.
Thus, γ(TD(S)) = γ(ZD(S)) + γ(UD(S)). From Theorem 3.1, γ(ZD(S)) = 1 and from Exam-
ple 3.1, γ(UD(S)) = 1. Therefore, due to additive nature of the non-orientable genus, we have
γ(TD(S)) = 2.

(3,3)

(3,1)

(1,1)

(1,3)

(0,3)(2,2)

(0,2) (0,2)

(0,2) (0,2)

(1,0)

(1,0)

(2,0) (0,1)

(3,0)

(3,0)

(0,1) (2,0)

(2,1)

(1,2)

(3,2) (2,3)

Figure 9: Embedding of TD(Z4 × Z4) ∼= TD

(
Z2[t]

⟨t2⟩
×
Z2[t]

⟨t2⟩

)
in S2.

4 Conclusion

Let S = C×C×· · ·×C (k times), where 2 ≤ k < ∞. In this work, we first consider the graphs
ZD(S) andTD(S) introduced byAsma et al. [5] and categorize the commutative rings that exhibit
toroidal and bi-toroidal graphs. We also examine the graphs ZD(S) and TD(S) introduced by
Badawi, and obtain the rings S for which these graphs have crosscap numbers one and two.
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