

Malaysian Journal of Mathematical Sciences

Journal homepage: https://mjms.upm.edu.my

On The Genus of Extended Dot Product Graph and The Crosscap of Dot Product Graph

Ali, A.* ¹0¹, Sarmin, N. H. ¹0², and Ahmad, B. ¹0¹

¹Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh-202002, India ²Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

E-mail: asma_ali2@rediffmail.com *Corresponding author

Received: 10 September 2024 Accepted: 13 March 2025

Abstract

Let $S=C\times\cdots\times C$ (k times) and $1\leq k<\infty$ be an integer, where C is a commutative ring with unity $1\neq 0$. In this paper, we classify the rings S such that the extended total dot product graph $\overline{TD}(S)$ and the extended zero-divisor dot product graph $\overline{ZD}(S)$ have genus one and two. Furthermore, we characterize S such that the total dot product graph TD(S) and the zero-divisor dot product graph ZD(S) have crosscap one and two.

Keywords: dot product graph; genus; crosscap; reduced ring.

1 Introduction

The exploration of algebraic graph assignments to commutative rings began with Beck's work [10], which primarily focused on graph coloring. In 1999, Anderson and Livingston [7] studied ring theory in relation to graph theory by introducing zero-divisor graph $\Gamma(S)$, where S is a commutative ring with unity. The vertex set of this graph consists of $Z(S)^*$ (nonzero zero-divisors), and two distinct vertices $r,s\in Z(S)^*$ form an edge if and only if rs=0. Anderson and Livingston studied the connectedness, diameter and girth of $\Gamma(S)$. Further this work is continued by Akbari and Mohammadian [2, 3]. Since then, investigations into the characteristics of a ring through its zero-divisor graph have developed into a rich field of study, marked by continuous inquiries and valuable insights [6]. The extended zero-divisor graph, denoted by $\overline{\Gamma}(S)$, was introduced by Bennis et al. [11], in which the vertex set of $\overline{\Gamma}(S)$ is taken as $Z(S)^*$. The adjacency between w and z from $Z(S)^*$ is contingent upon the condition $w^kz^\ell=0$, where $w^k\neq 0$ and $z^\ell\neq 0$, where k and ℓ are positive integers. There are various other extensions of the zero-divisor graph has been done two of them are studied [4, 13].

Let $S=C\times\cdots\times C$ (k times) and $1\leq k<\infty$ be an integer, where C is a commutative ring with $1\neq 0$. In 2015, Badawi [8] introduced the idea of dot product graph. The author defined total dot product graph TD(S) with vertex set $S^*=S\setminus\{(0,0,\ldots,0)\}$ and zero-divisor dot product graph ZD(S) with vertex set $Z(S)^*$. Two vertices are taken from S^* and $Z(S)^*$, respectively and two distinct vertices $t=(t_1,t_2,\ldots,t_m)$ and $s=(s_1,s_2,\ldots,s_m)$ are adjacent if and only if $t\cdot s=0$. Badawi [8] proved some results regarding the connectedness, diameter and girth of this graph. In 2020, Selvakumar et al. [14] further explored these graphs, categorized S, for which TD(S) and ZD(S) have a genus of zero, one, or two. Also there are work related to topological properties of zero-divisor graph and its extended zero-divisor graph are studied in [16, 15].

In 2024, Asma et al. [5] extended the dot product graph and defined two new types of graphs: the extended total dot product graph $\overline{TD}(S)$, with the set S^* as the vertex set, and the extended zero-divisor dot product graph $\overline{ZD}(S)$, with the set $Z(S)^*$ as the vertex set. Two vertices w and z (distinct) are adjacent if and only if $w^k \cdot z^\ell = 0$, where $w^k \neq 0$ and $z^\ell \neq 0$. The main objective of [5] was to examine the basic properties of these graphs and also classify the rings S for which $\overline{TD}(S)$ and $\overline{ZD}(S)$ are planar/outerplanar. This paper aims to determine the if and only if conditions under which these graphs have a genus one or two, and also classify the ring S such that TD(S) and ZD(S) have a crosscap number of one or two.

Throughout the paper, we consider C to be a commutative ring with unity $1 \neq 0$, and $S = C \times C \times \cdots \times C$ (k times), where k is a positive integer. We also consider S^\times as the set of units of S and C^\times as the set of units of C. A ring S with no nonzero nilpotent element is called reduced. Let H be a graph with vertex set V and edge set E. A graph is said to be connected if there is a path between every pair of distinct vertices in H; if not, it is termed disconnected. A complete bipartite graph $K_{|V_1|,|V_2|}$ splits the vertex set V into two subsets, V_1 and V_2 . In this graph, each vertex in V_1 is adjacent to every vertex in V_2 , but no two distinct vertices within the same subset are adjacent, where $|V_1|$ and $|V_2|$ denote the cardinalities of the sets V_1 and V_2 , respectively. A planar graph is one that can be embedded on a plane such that its edges meet only at their endpoints.

Let \mathbb{S}_n represent a sphere with n handles, where n is a natural number; in other words, \mathbb{S}_n is an orientable surface characterized by having n handles. The minimum value of n that permits a graph H to be embedded in the orientable surface in \mathbb{S}_n is known as the genus of the graph, denoted by $\gamma(H)$. In other words, the smallest number of handles needed for its embedding on an orientable surface is called the genus of a graph. A graph is termed as planar if $\gamma(H)=0$. If $\gamma(H)=1$, then, the graph is referred as toroidal and a graph having genus two is known as

bi-toriodal. The crosscap number $\overline{\gamma}(H)$ is the minimum number of projective planes k required to embed H in $\overline{\mathbb{S}}_n$, where $\overline{\mathbb{S}}_n$ denote a sphere with k projective planes. If a graph H that can be embedded into $\overline{\mathbb{S}}_1$ but cannot be embedded into a plane, then, it is called crosscap one of H and if a graph that can be embedded into $\overline{\mathbb{S}}_2$ but not in $\overline{\mathbb{S}}_1$, then, it is called crosscap two of H. The minor subgraph H' of a graph H is a graph obtained through the contraction of its edges and isolation of vertices. The contracted edges of a minor subgraph are symbolized by the vertex [u,z], where u and z belong to the vertex set V(H). If the graph H have a minor subgraph H', then, the genus and crosscap of H' is less than or equal to the genus and crosscap of H.

2 Genus of $\overline{TD}(S)$ and $\overline{ZD}(S)$

In this section, we categorize the rings $S = C \times C \times \cdots \times C$ (k times) such that $\overline{TD}(S)$ and $\overline{ZD}(S)$ are of genus one and two.

Lemma 2.1. [17, Theorem 6.37] If $r, s \ge 2$ are integers, then,

$$\gamma(K_{r,s}) = \left\lceil \frac{(r-2)(s-2)}{4} \right\rceil.$$

Lemma 2.2. [14, Lemma 4.2] If H be a simple connected graph with n vertices, m edges and girth gr, then,

$$\gamma(H) \ge \frac{m(gr-2)}{2qr} - \frac{n}{2} + 1.$$

Lemma 2.3. [9, Theorem 4.3] The genus of a graph is the total of the genera of its individual blocks.

Theorem 2.1. [5, Theorem 4.1] Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then, $\overline{ZD}(S)$ is planar if and only if $S \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem 2.2. [5, Theorem 4.2] Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then, $\overline{TD}(S)$ is planar if and only if $S \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Lemma 2.4. If $C \cong \mathbb{Z}_2$ and $S = C \times C \times \cdots \times C$ (k times), where $4 \leq k < \infty$, then, $\gamma(\overline{ZD}(S)) \geq 3$.

Proof. Suppose $k \geq 4$, and consider the set $H = H_1 \cup H_2$, where

$$H_{1} = \left\{ h_{1} = (1, 0, 0, 1, 0, \dots, 0), h_{2} = (0, 1, 1, 0, \dots, 0), h_{3} = (1, 0, 1, 0, \dots, 0), \right.$$

$$h_{4} = (0, 1, 0, 1, \dots, 0), h_{5} = (1, 1, 0, 0, \dots, 0), h_{6} = (0, 0, 1, 1, 0, \dots, 0) \right\},$$

$$H_{2} = \left\{ h'_{1} = (0, 1, 0, 0, \dots, 0), h'_{2} = (1, 1, 1, 0, \dots, 0), h'_{3} = (0, 0, 1, 0, \dots, 0), \right.$$

$$h'_{4} = (1, 1, 0, 1, 0, \dots, 0), h'_{5} = (0, 0, 0, 1, 0, \dots, 0), h'_{6} = (1, 1, 0, 1, \dots, 0),$$

$$h'_{7} = (1, 0, 0, \dots, 0), h'_{8} = (0, 1, 1, 1, 0, \dots, 0) \right\}.$$

Then, H is the smallest set of vertices contained in $V(\overline{ZD}(S))$. On contracting the vertices $[h_1, h_2]$, $[h_3, h_4]$ and $[h_5, h_6]$, we get the graph which is the minor subgraph of $\overline{ZD}(S)$, shown in Figure 1. Since we observe that the minor subgraph has eleven vertices and forty edges, so, by Lemma 2.2, we get $\gamma(\overline{ZD}(S)) \geq 3$.

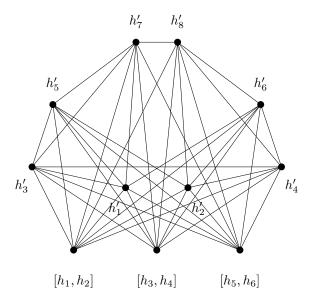


Figure 1: Minor subgraph of $\overline{ZD}(S)$.

Selvakumar et al. [14, Theorem 5.1] proved that $\gamma(ZD(C \times C \times C)) \geq 3$, if $|C| \geq 3$. Since $\overline{ZD}(S)$ span ZD(S) (spanning subgraph of $\overline{ZD}(S)$), then, $\gamma(\overline{ZD}(C \times C \times C)) \geq 3$. Hence, we deduce the following:

Lemma 2.5. If $|C| \ge 3$, and $S = C \times C \times C$. Then, $\gamma(\overline{ZD}(S)) \ge 3$.

The lemma can also be extended as follows:

Lemma 2.6. Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$ and C is a nonreduced ring. Then, $\gamma(\overline{ZD}(S)) \ge 3$.

Proof. Since C is nonreduced, then, $|C| \ge 4$. Let $z \in N(C)^*$ (nonzero nilpotent elements of C) and $1 \ne k \in C^{\times}$ (units of C). Consider the set $D = \{r_1, r_2, r_3, r_4, r_5, s_1, s_2, s_3, s_4, s_5\}$, where,

$$r_1 = (1, 0, ..., 0), \quad r_2 = (z, 0, ..., 0), \quad r_3 = (k, 0, ..., 0), \quad r_4 = (1, z, 0, ..., 0), \quad r_5 = (k, z, 0, ..., 0), \\ s_1 = (0, 1, 0, ..., 0), \quad s_2 = (0, z, 0, ..., 0), \quad s_3 = (0, k, 0, ..., 0), \quad s_4 = (z, 1, 0, ..., 0), \quad s_5 = (z, k, 0, ..., 0).$$

Then, the graph obtained from the set D contains the induced subgraph, which is isomorphic to $K_{5,5}$ in Figure 2. Since C is nonreduced, then, $D \subseteq V(\overline{ZD}(S))$. Hence, $\gamma(\overline{ZD}(S)) \ge 3$.

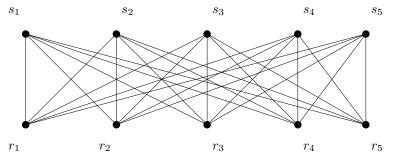


Figure 2: Subgraph of $\overline{ZD}(S)$.

Theorem 2.3. Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then, $\gamma(\overline{ZD}(S)) = 1$, if and only if,

$$S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}, \quad \text{or } \mathbb{Z}_5 \times \mathbb{Z}_5.$$

Proof. If $k \geq 4$, then by Lemma 2.4, we get $\gamma(\overline{ZD}(S)) \geq 3$. If k = 3 and $|C| \geq 3$, then by Lemma 2.5, $\gamma(\overline{ZD}(S)) \geq 3$. Also, if $S \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, then from Theorem 2.1, $\overline{ZD}(S)$ is planar. Hence,

Now, if *C* is nonreduced ring, then from Lemma 2.6, $\gamma(\overline{ZD}(S)) \geq 3$, not possible by assumption. Let k=2 and C is reduced (not a field). Then, $|C| \geq 6$. Since $\overline{ZD}(S)$ has an induced subgraph $K_{5,5}$, then by Lemma 2.1, $\gamma(\overline{ZD}(S)) \geq 3$, not possible by assumption. Now, we check the rings; $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, $\frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle}$ and $\mathbb{Z}_5 \times \mathbb{Z}_5$. If we consider the rings $\mathbb{Z}_2 \times \mathbb{Z}_2$ and $\mathbb{Z}_3 \times \mathbb{Z}_3$, then from Theorem 2.1, $\overline{ZD}(S)$ is a planar, a contradiction. So, the possible rings S for which $\overline{ZD}(S)$ is of genus one are $\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}$ or $\mathbb{Z}_5 \times \mathbb{Z}_5$.

Conversely, if $S\cong \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}$ or $\mathbb{Z}_5 \times \mathbb{Z}_5$. Then, the graph obtained from $\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} imes \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}$ and $\mathbb{Z}_5 imes \mathbb{Z}_5$ are isomorphic to $K_{3,3}$ and $K_{4,4}$, respectively. Therefore, from Lemma 2.1, we have $\gamma(\overline{ZD}(S)) = 1$.

Theorem 2.4. Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then, $\gamma(\overline{ZD}(S)) = 0$ or 1 or ≥ 3 .

Proof. Assume that $\gamma(\overline{ZD}(S)) = 2$. If we consider $k \geq 4$, then from Lemma 2.4, we get $\gamma(\overline{ZD}(S)) \geq 4$ 3, a contradiction. Hence, $k \leq 3$.

- Case (a) k = 3. If $|C| \ge 3$, then from Lemma 2.5, $\gamma(\overline{ZD}(S)) \ge 3$, a contradiction. Hence, |C| = 2. Also, if $S \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, then from Theorem 2.1, $\overline{ZD}(S)$ is planar.
- Case (b) k = 2. If $|C| \ge 6$, then, clearly $K_{5,5}$ is a subgraph of $\overline{ZD}(S)$. Therefore, from Lemma 2.1, $\overline{\gamma}(\overline{ZD}(S)) \ge 3$, a contradiction. Hence, $|C| \le 5$. So the following rings are under consideration: $\mathbb{Z}_5 \times \mathbb{Z}_5$, $\frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[x]}{\langle t^2 + t + 1 \rangle}$, $\mathbb{Z}_3 \times \mathbb{Z}_3$ and $\mathbb{Z}_2 \times \mathbb{Z}_2$. Thus, from Theorem 2.1 and Theorem 2.3, we obtain that $\overline{ZD}(S)$ is either planar or of genus 1, again a contradiction. Hence, $\gamma(\overline{ZD}(S)) \geq 3$.

Remark 2.1. Let $S = C \times C \times \cdots \times C$ (k times), where C is a ring with $1 \neq 0$ and $2 \leq k < \infty$. Then from Theorem 2.4, we conclude that there is no ring S for which $\gamma(\overline{ZD}(S)) = 2$.

Theorem 2.5. Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then, the nonzero genus of $\overline{TD}(S)$ is at least 2.

925

Proof. Since $\overline{TD}(S)$ has an induced subgraph $\overline{ZD}(S)$, then, from Theorem 2.4, the only possibility of rings S such that $\gamma(\overline{TD}(S))=2$ are $\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}$ or $\mathbb{Z}_5 \times \mathbb{Z}_5$. If we consider $\mathbb{Z}_5 \times \mathbb{Z}_5$, then, it contains a subgraph which have disjoint copies of two $K_{4,4}$ in Figures 3 and 4. Thus from Lemmas 2.1 and 2.3, $\gamma(\overline{TD}(\mathbb{Z}_5 \times \mathbb{Z}_5)) \geq 2$.

Similarly, if we consider $\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}$, then, it contain two disjoint copies of $K_{3,3}$. Therefore, from Lemmas 2.1 and 2.3, $\gamma(\overline{TD}(\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}\times\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle})\geq 2$. Hence, genus of $\overline{TD}(S)$ is at least 2.

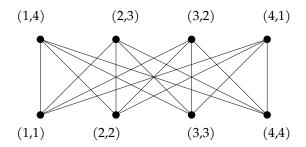


Figure 3: Subgraph of $\overline{TD}(\mathbb{Z}_5 \times \mathbb{Z}_5)$.

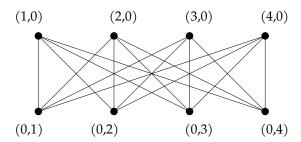


Figure 4: Subgraph of $\overline{TD}(\mathbb{Z}_5 \times \mathbb{Z}_5)$.

Remark 2.2. Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then from Theorem 2.5, we conclude that there is no ring S for which $\gamma(\overline{TD}(S)) = 1$.

Theorem 2.6. Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then, $\gamma(\overline{TD}(S)) = 2$ if and only if $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle}$ or $\mathbb{Z}_5 \times \mathbb{Z}_5$.

Proof. Suppose that $k \geq 4$ and $\gamma(\overline{TD}(S)) = 2$. As $\overline{ZD}(S)$ is an induced subgraph of $\overline{TD}(S)$, then from Lemma 2.4 $\gamma(\overline{TD}(S) \geq 3$, a contradiction. Thus, $k \leq 3$. Let, $k \leq 3$. Then from Lemma 2.5, $\gamma(\overline{TD}(S) \geq 3$. Hence, k=2. Assume that $|C| \geq 6$. Then, $K_{5,5}$ is a subgraph of $\overline{TD}(S)$. Therefore, from Lemma 2.1 $\gamma(\overline{TD}(S) \geq 3$. Thus, $|C| \leq 5$. Also, if $S \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$, then from Theorem **2.2**, $\overline{TD}(S)$ is planar, which is not possible by assumption. So, the possible rings such that $\gamma(\overline{TD}(S)) = 2 \text{ are } \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \text{ or } \mathbb{Z}_5 \times \mathbb{Z}_5.$

Conversely, let
$$S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle}$$
 or $\mathbb{Z}_5 \times \mathbb{Z}_5$. Then by [5, Theorem 8], $\overline{TD}(S) = TD(S)$. Thus from [14, Theorem 5.2], $\gamma(\overline{TD}(S)) = 2$.

3 Crosscap Characterizations of TD(S) and ZD(S)

Let $S = C \times \cdots \times C$ (k times), where $1 \le k < \infty$. The unit dot product graph UD(S) is defined as the graph whose vertex set is S^{\times} , where two distinct vertices $c_1, c_2 \in S^{\times}$ are connected by an edge if and only if $c_1 \cdot c_2 = 0$. The graph UD(S) is a subgraph of TD(S), which is introduced and studied by Abdulla and Badawı in [1]. In this section, we classify the rings S for which TD(S) and ZD(S) are of crosscap one and two.

Lemma 3.1. [17, Theorem 11.23]
$$\overline{\gamma}(K_p,q) = \left\lceil \frac{(p-2)(q-2)}{2} \right\rceil$$
, where $p \ge 1$ and $q \ge 1$. In particular, $\overline{\gamma}(K_{3,3}) = 1$ and $\overline{\gamma}(K_{3,4}) = 1$.

Corollary 3.1. [12, Corollary 1.5] Let H be a graph with two subgraphs H_1 and H_2 , where H_1 and H_2 are isomorphic to K_5 or $K_{3,3}$. If $H_1 \cap H_2 = v$, then, $\overline{\gamma}(H) \geq 2$.

Example 3.1. Let
$$S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle}$$
. Then, $\overline{\gamma}(UD(S)) = 1$.

Proof. Here,

$$V(UD(S)) = \Big\{ (\overline{1}, \overline{1}), (\overline{1}, \overline{1+t}), (\overline{t}, \overline{t}), (\overline{1+t}, \overline{1+t}), (\overline{1+t}, \overline{1}), (\overline{t}, \overline{1+t}), (\overline{1}, \overline{t}), (\overline{t}, \overline{1}), (\overline{t+t}, \overline{t}) \Big\}.$$

Embedding of $UD\left(\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}\right)$ in $\overline{\mathbb{S}}_1$ is shown in the Figure 5.

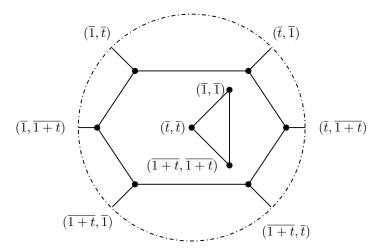


Figure 5: Embedding of $UD\left(\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} imes \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}\right)$ in $\overline{\mathbb{S}}_1$.

Lemma 3.2. If $C \cong \mathbb{Z}_2$ and $S = C \times C \times \cdots \times C$ $(k \ge 4 \ times)$, then, $\overline{\gamma}(ZD(S)) \ge 3$.

Proof. Let us consider the set $H = H_1 \cup H_2$, where

$$H_1 = \Big\{ \ell_1 = (1, 1, 0, 0, \dots, 0), \ell_2 = (0, 0, 1, 1, 0, \dots, 0), \ell_3 = (0, 1, 0, 1, 0, \dots, 0),$$

$$\ell_4 = (1, 0, 1, 0, \dots, 0), \ell_5 = (0, 1, 1, 0, \dots, 0), \ell_6 = (1, 0, 0, 1, 0, \dots, 0) \Big\}, \quad \text{and}$$

$$H_2 = \Big\{ t_1 = (1, 0, 0, 0, \dots, 0), t_2 = (0, 0, 0, 1, 0, \dots, 0), t_3 = (0, 0, 1, 0, \dots, 0),$$

$$t_4 = (1, 1, 1, 0, \dots, 0), t_5 = (0, 1, 1, 1, 0, \dots, 0), t_6 = (1, 1, 0, 1, 0, \dots, 0),$$

$$t_7 = (1, 0, 1, 1, 0, \dots, 0) \Big\}.$$

Then, $H \subseteq V(ZD(S))$. On contracting the edges $[\ell_1, \ell_2]$, $[\ell_3, \ell_4]$ and $[\ell_5, \ell_6]$, then, the graph obtained from the set H contains an induced subgraph $K_{3,7}$ in Figure 6. Therefore, from Lemma 3.1, $\overline{\gamma}(ZD(S)) \geq 3$.

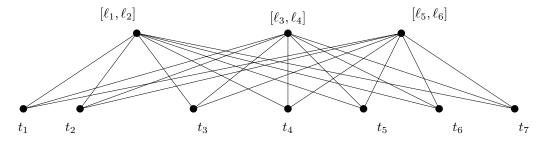


Figure 6: Minor subgraph of ZD(S).

Example 3.2. Let $C \cong \mathbb{Z}_3$ and $S = C \times C \times C$. Then, $\overline{\gamma}(ZD(S)) \geq 2$.

Proof. Let,

$$I_1 = \Big\{ (1,2,0), (0,0,1), (0,1,0), (2,1,0), (0,0,2), (1,1,0), (2,2,0) \Big\}, \quad \text{ and } \\ I_2 = \Big\{ (1,0,0), (0,1,2), (0,2,1), (0,1,1), (2,0,0), (0,2,0), (0,2,2) \Big\}.$$

Then, $I_1 \cup I_2 \subset V(ZD(S))$. On contracting the edges [(0,0,1),(0,1,0)], [(2,0,0),(0,2,0)] and [(0,0,2),(1,0,0)], we see that the graphs obtained from I_1 and I_2 are $K_{3,3}$ (shown in Figure 7). Let the graph obtained by set I_1 is H_1 and the graph obtained by set I_2 is H_2 Then, clearly $H_1 \cap H_2 = \{[(0,0,2),(1,0,0)]\}$. Thus, the graph in the Figure 7 satisfies the condition of Corollary 3.1. Therefore, $\overline{\gamma}(ZD(S)) \geq 2$.

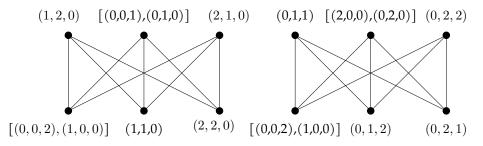


Figure 7: Minor subgraphs of $ZD(\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3)$.

Theorem 3.1. Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then, $\overline{\gamma}(ZD(S)) = 1$ if and only if $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle}$.

Proof. Suppose that $\overline{\gamma}(ZD(S))=1$. Assume $k\geq 4$. Then from Lemma 3.2, $\overline{\gamma}(ZD(S))\geq 3$, not possible by assumption. Thus, $k\leq 3$. If k=3 and $|C|\geq 3$, then, $ZD(\mathbb{Z}_3\times\mathbb{Z}_3\times\mathbb{Z}_3)$ is a subgraph of ZD(S). Therefore, from Example 3.2, $\overline{\gamma}(ZD(S))\geq 2$, not possible by assumption. Hence, k=2.

Now, assume that $|C| \geq 5$, then, $K_{4,4}$ is a subgraph of ZD(S). Therefore, from Lemma 3.2, $\overline{\gamma}(ZD(S)) \geq 2$, not possible by assumption. So, possible rings under consideration are $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and $\frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle}$. If $S \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, then, ZD(S) is planar by [14, Corollary 3.5]. Thus, $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle}$.

Conversely, if $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1 \rangle}$, then, $ZD(S) \cong K_{3,3}$. Hence, from Lemma 3.1, $\overline{\gamma}(ZD(S)) = 1$.

Theorem 3.2. Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then, $\overline{\gamma}(ZD(S)) = 2$ if and only if, $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle}$ or $\mathbb{Z}_4 \times \mathbb{Z}_4$ or $\mathbb{Z}_5 \times \mathbb{Z}_5$.

Proof. Suppose that $\overline{\gamma}(ZD(S))=2$. Assume $k\geq 4$. Then from Lemma 3.2, $\overline{\gamma}(ZD(S))\geq 3$, not possible by assumption. Thus, $k\leq 3$.

Let k=3 and $C\cong\mathbb{Z}_3$, then from Example 3.2, $\overline{\gamma}(ZD(\mathbb{Z}_3\times\mathbb{Z}_3\times\mathbb{Z}_3))\geq 2$. Claim $\overline{\gamma}(ZD(\mathbb{Z}_3\times\mathbb{Z}_3\times\mathbb{Z}_3))\geq 3$. Since $\{(1,0,1),(1,0,2),(2,0,2),(2,0,1)\}\subset V\big(ZD(\mathbb{Z}_3\times\mathbb{Z}_3\times\mathbb{Z}_3)\big)$. Clearly (1,0,1)-(1,0,2)-(2,0,2)-(2,0,1)-(1,0,1) forms a cycle. Therefore, these vertices lie on the same face during the imbedding into N_2 . Now, if (0,1,0) and (0,2,0) lie on the distinct copies of $K_{3,3}$, then, there is edge crossing in the embedding.

Also, if (0,1,0) and (0,2,0) lie on the same copies of $K_{3,3}$, then, there is an edge crossing, again a contradiction. Hence, $\overline{\gamma}(ZD(\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3)) \geq 3$. Now, $ZD(\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3)$ is a subgraph of $ZD(C \times C \times C)$. Therefore, $\overline{\gamma}(ZD(C \times C \times C)) \geq 3$.

Assume that k=2. If $|C|\geq 6$, then, clearly $K_{5,5}$ is a subgraph of $ZD(C\times C)$, from Lemma 3.1, a contradiction. Hence, $|C|\leq 5$. Thus, the following rings under consideration are $\mathbb{Z}_2\times\mathbb{Z}_2,\mathbb{Z}_3\times\mathbb{Z}_3,\mathbb{Z}_3$, $\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2$, $\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}\times\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle},\frac{\mathbb{Z}_2[t]}{\langle t^2\rangle}\times\frac{\mathbb{Z}_2[t]}{\langle t^2\rangle}$, $\mathbb{Z}_4\times\mathbb{Z}_4$ and $\mathbb{Z}_5\times Z_5$. If $S\cong\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2$ or $\mathbb{Z}_2\times\mathbb{Z}_2$ or $\mathbb{Z}_3\times\mathbb{Z}_3$, then, by [14, Corollary 3.5], ZD(S) is planar, leading to a contradiction. Now, if $S\cong\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}\times\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}$, then from Theorem 3.1, ZD(S) is of crosscap one, again a contradiction. Hence, the possible rings such that ZD(S) is of crosscap two are $\frac{\mathbb{Z}_2[t]}{\langle t^2\rangle}\times\frac{\mathbb{Z}_2[t]}{\langle t^2\rangle}$ or $\mathbb{Z}_4\times\mathbb{Z}_4$ or $\mathbb{Z}_5\times\mathbb{Z}_5$.

Conversely, if $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle x^2 \rangle}$ or $\mathbb{Z}_4 \times \mathbb{Z}_4$, then, the embedding of ZD(S) is shown in the

Figure 8. Also, if S is isomorphic to $\mathbb{Z}_5 \times \mathbb{Z}_5$, then, $ZD(S) \cong K_{4,4}$. Therefore, from Lemma 3.1, $\overline{\gamma}(ZD(\mathbb{Z}_5 \times \mathbb{Z}_5)) = 2$.

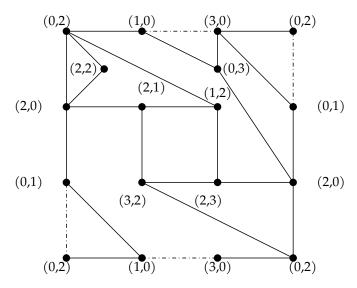


Figure 8: Embedding of $ZD(\mathbb{Z}_4 \times \mathbb{Z}_4) \cong ZD\left(\frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle}\right)$ in $\overline{\mathbb{S}}_2$.

Remark 3.1. If H is a disconnected graph with connected components $H_1, H_2, ..., H_k$ such that $\bigcap_{i=1}^k H_i = \phi$ and $\overline{\gamma}(H_i)$ is the non-orientable genus of i-th connected component, then, $\overline{\gamma}(H) = \sum_{1}^k \overline{\gamma}(H_i)$. This relationship holds due to the additive nature of the non-orientable genus when dealing with disconnected graphs. So, we use this concept in next result whenever graph is disconnected.

Theorem 3.3. Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. Then, $\overline{\gamma}(TD(S)) = 2$ if and only if, $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle}$ or $\frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle}$ or $\mathbb{Z}_4 \times \mathbb{Z}_4$.

Proof. Since TD(S) contains ZD(S), then, from Theorems 3.1 and 3.2, the only possibility of TD(S) is of crosscap two are $\frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}$ or $\frac{\mathbb{Z}_2[t]}{\langle t^2\rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2\rangle}$ or $\mathbb{Z}_4 \times \mathbb{Z}_4$ or $\mathbb{Z}_5 \times \mathbb{Z}_5$. Let $S \cong \mathbb{Z}_5 \times \mathbb{Z}_5$. Then from Theorem 3.2, $\overline{\gamma}(ZD(S)) = 2$. Also UD(S) has a subgraph $K_{4,4}$, therefore from Lemma 3.1, $\overline{\gamma}(UD(S)) \geq 2$. Since ZD(S) and UD(S) have total three connected components of TD(S) with $V(ZD(S)) \cap V(UD(S)) = \phi$ and $E(ZD(S)) \cap E(UD(S)) = \phi$.

Therefore, due to additive nature of crosscap, we have $\overline{\gamma}(TD(S)) \geq 4$, a contradiction. Thus, $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 + t + 1 \rangle}$ or $\frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle}$ or $\mathbb{Z}_4 \times \mathbb{Z}_4$.

Conversely, if $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle}$ or $\mathbb{Z}_4 \times \mathbb{Z}_4$. Then, the embedding of TD(S) is shown in the

Figure 9. Next, if $S \cong \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2+t+1\rangle}$, then, TD(S) is disconnected graph. Since $TD(S) = ZD(S) \cup UD(S)$ with $E(ZD(S)) \cap E(UD(S)) = \phi$ and $V(ZD(S)) \cap V(UD(S)) = \phi$. Thus, $\overline{\gamma}(TD(S)) = \overline{\gamma}(ZD(S)) + \overline{\gamma}(UD(S))$. From Theorem 3.1, $\overline{\gamma}(ZD(S)) = 1$ and from Example 3.1, $\overline{\gamma}(UD(S)) = 1$. Therefore, due to additive nature of the non-orientable genus, we have $\overline{\gamma}(TD(S)) = 2$.

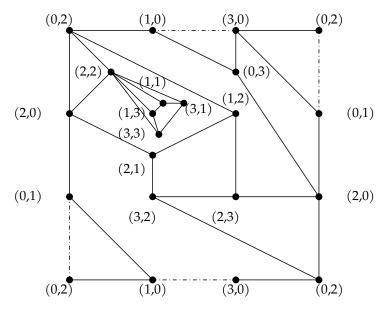


Figure 9: Embedding of $TD(\mathbb{Z}_4 \times \mathbb{Z}_4) \cong TD\left(\frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle} \times \frac{\mathbb{Z}_2[t]}{\langle t^2 \rangle}\right)$ in $\overline{\mathbb{S}}_2$.

4 Conclusion

Let $S = C \times C \times \cdots \times C$ (k times), where $2 \le k < \infty$. In this work, we first consider the graphs $\overline{ZD}(S)$ and $\overline{TD}(S)$ introduced by Asma et al. [5] and categorize the commutative rings that exhibit toroidal and bi-toroidal graphs. We also examine the graphs ZD(S) and TD(S) introduced by Badawi, and obtain the rings S for which these graphs have crosscap numbers one and two.

Acknowledgement The authors are very grateful to the referees for their useful comments and valuable suggestions that helped improve this work.

Conflicts of Interest The authors declare no conflict of interest.

References

- [1] M. Abdulla & A. Badawi (2020). On the dot product graph of a commutative ring II. *International Electronic Journal of Algebra*, 28(28), 61–74. https://doi.org/10.24330/ieja.768135.
- [2] S. Akbari & A. Mohammadian (2004). On the zero-divisor graph of a commutative ring. *Journal of Algebra*, 274(2), 847–855. https://doi.org/10.1016/S0021-8693(03)00435-6.
- [3] S. Akbari & A. Mohammadian (2006). Zero-divisor graphs of non-commutative rings. *Journal of Algebra*, 296(2), 462–479. https://doi.org/10.1016/j.jalgebra.2005.07.007.
- [4] A. Ali & B. Ahmad (2024). An extension of the essential graph of a ring. *Algebra and Discrete Mathematics*, 37(1), 12–21. https://doi.org/10.12958/adm2120.
- [5] A. Ali, B. Ahmad & T. T. Chelvam (2024). Extended dot product graph of a commutative ring. *Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry*, 65(3), 623–634. https://doi.org/10.1007/s13366-023-00708-9.
- [6] D. F. Anderson, T. Asir, A. Badawi & T. T. Chelvam (2021). *Graphs From Rings*. Springer, Cham. https://doi.org/10.1007/978-3-030-88410-9.
- [7] D. F. Anderson & P. S. Livingston (1999). The zero-divisor graph of a commutative ring. *Journal of Algebra*, 217(2), 434–447. https://doi.org/10.1006/jabr.1998.7840.
- [8] A. Badawı (2015). On the dot product graph of a commutative ring. *Communications in Algebra*, 43(1), 43–50. https://doi.org/10.1080/00927872.2014.897188.
- [9] J. Battle, F. Harary & Y. Kodama (1962). Additivity of the genus of a graph. *Bulletin of the American Mathematica Society*, 68(6), 565–568.
- [10] I. Beck (1988). Coloring of commutative rings. *Journal of Algebra*, 116(1), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5.
- [11] D. Bennis, J. Mikram & F. Taraza (2016). On the extended zero divisor graph of commutative rings. *Turkish Journal of Mathematics*, 40(2), Article ID: 12. https://doi.org/10.3906/mat-1504-61.
- [12] H. J. Chiang-Hsieh (2008). Classification of rings with projective zero-divisor graphs. *Journal of Algebra*, 319(7), 2789–2802. https://doi.org/10.1016/j.jalgebra.2007.10.015.
- [13] S. A. Mir, C. Abdioğlu, N. ur Rehman, M. Nazim, M. Akkafa & E. Y. Çelikel (2024). Clear graph of a ring. *Indian Journal of Pure and Applied Mathematics*, 2024, 1–11. https://doi.org/10.1007/s13226-024-00581-9.
- [14] K. Selvakumar, V. Ramanathan & C. Selvaraj (2023). On the genus of dot product graph of a commutative ring. *Indian Journal of Pure and Applied Mathematics*, 54(2), 558–567. https://doi.org/10.1007/s13226-022-00275-0.
- [15] N. ur Rehman, M. Nazim & S. A. Mir (2024). On the planarity, genus, and crosscap of the weakly zero-divisor graph of commutative rings. *Revista de la Unión Matemática Argentina*, 67(1), 213–227. https://doi.org/10.33044/revuma.2837.
- [16] H. J. Wang (2006). Zero-divisor graphs of genus one. *Journal of Algebra*, 304(2), 666–678. https://doi.org/10.1016/j.jalgebra.2006.01.057.
- [17] A. T. White (1973). *Graph, Groups and Surfaces*. Publishing Company, Amsterdam, North-Holland.